Challenges for Imputing Missing Covariates in Meta-Regression

Jacob M. Schauer jms@u.northwestern.edu Institute for Policy Research Northwestern University

NSF Grant #1841075

SRSM 2019

A Simple Meta-Regression

Is a reading intervention more/less effective for low-SES students?

- Effect size esimates Y_i.
- Variance of effect estimates v_i .
- Did study *i* involve (mostly) students who are low-SES?
 - $X_i = 1$ for low-SES students.
 - $X_i = 0$ for not low-SES students.
 - X_i missing if information not given.
- Subgroup analysis/ANOVA (Hedges, 1982)
- Are the reasons the X_i are missing related to things you observe or not?

Missing (Completely) at Random

Handling Data Missing at Random

- **Complete case analysis:** Only analyze studies for which we observe effect sizes, variances, and predictors.
 - Common approach in practice (Tipton, Pustejovsky, & Ahmadi, 2019).
 - May only be a few complete cases, so **standard errors will be** large.
 - Unless the data are missing *completely* at random, **estimates can be biased** (Pigott, 2001; Rubin, 1976).
- Multiple imputation: Fill in values for missing predictors.
 - Strong theoretical/empirical justification (Little & Rubin, 1987; Rubin, 1996).
 - Commonly used in many other fields.
 - Tons of great software (e.g., mice in R)

Multiple Imputation

- Fill in values for the missing X_i according to some predictive model.
 - Fill in multiple m values for each missing $X_i, \, {\rm creating} \, m$ complete datasets.
 - Run regression model on each dataset.
 - Pool regression models across datasets.
- Accuracy/validity can depend on the way in which we fill in the X_i (Little & Rubin, 1987).
 - Predict X_i given Y_i and/or v_i (and other observed data)
 - We want to use **appropriate** models to fill in X_i.

Example: Imputing X_i

Example: Imputing X_i

(Statistical) Compatibility

- In order guarantee MI produces valid inferences, imputation models need to be **congenial** with the regression model (Meng, 1994; Liu et al., 2014).
 - What the Y_i and v_i say about the X_i should reflect what the X_i say about the $Y_i.$
- Explicitly using the analysis model as part of the imputation model can help ensure congenial imputations (Bartlett, et al., 2015).
- While common software are flexible, none provide congenial imputations for meta-regression/sub-group analyses.
 - Only on my laptop for now!

Implications

- Using standard MI software results in **uncongenial imputations** for meta-regression.
- Analyses using **uncongenial imputations** are not guaranteed to produce unbiased or appropriately precise results.
- Using out-of-the-box MI software (e.g., mice) can result in bias.
- **Compatible imputations are possible** and can provide unbiased and more precise analyses, but are not widely available (yet).

Forthcoming Findings

- If there is a very small amount of missing data, complete-case analysis and out-of-the-box software may work reasonably well.
- If there is a moderate to large amount of missing data:
 - complete case analyses will be biased (or impossible)
 - **out-of-the-box MI software will also be biased**, but can be less biased and more precise than complete-case analyses
 - MI with compatible imputations will have very small or no bias, and will often be more precise than than incompatible imputations.

Thank you! jms@u.northwestern.edu

Works Cited

- Bartlett, J. W., Seaman, S. R., White, I. R., & Carpenter, J. R. (2015). Multiple imputation of covariates by fully conditional specification: Accommodating the substantive model. *Statistical Methods in Medical Research*, 24(4), 462–487.
- Little, R. J. A. & Rubin, D. B. (1987). *Statistical Analysis with Missing Data*. New York: Wiley.
- Meng, Xiao-Li. (1994). Multiple imputation inferences with uncongenial sources of input. *Statistical Science*, 9(4), 538–558.
- Pigott, T. D. (2001). Missing predictors in models of effect size. Evaluation & the Health Professions, 24(3), 277—307.
- Rubin, D. B. (1996). Multiple imputation after 18+ Years. Journal of the American Statistical Association, 91, 473–489.

(Statistical) Compatibility

The model we use to impute X_i must be **compatible** with the regression model.

• The imputation model $g(X_i|Y_i, v_i, \eta)$ and regression model $f(Y_i|X_i, v_i, \tau^2, \beta)$ must imply a joint distribution $p(X_i, Y_i|v_i, \eta, \beta, \tau^2)$ that exists.

In meta-regression, a compatible model can be written as (Bartlett et al., 2015):

$$g(X|Y,v,\beta,\tau^2) \propto f(Y|X,v,\beta,\tau^2)$$

Compatible Imputations for Predictors: Example

Imputing a single binary X:

- 1. Fit meta-regression model on complete cases.
- 2. Regress Y on X for complete cases.
- 3. Draw β, τ^2 from their posterior distributions.

4. Draw
$$X \sim Bernoulli(\pi)$$
 where $\pi = \frac{f(Y|1, v, \beta, \tau^2)}{f(Y|1, v, \beta, \tau^2) + f(Y|0, v, \beta, \tau^2)}$

5. Repeat 3-4 m times.

Standard implementations of MI do not have options for imputations that are compatible for meta-regression.

Simulation Details

- $\beta_0 = 0.025$
- $\beta_1=0.575$
- $\tau^2 = 0.005$
- $v_i \in [0.003, 0.1]$
- k = 50
- $X_i = 1$ for 30 studies (truth)
- Missing about 50% of X_i
 - Generate 5,000 datasets $(X, Y)_j$ according the the model.
 - Randomly delete \boldsymbol{X}_i with a probability that depends on
 - Run mice and to impute and estimate regression model.
 - Use compatible imputation model to estimate regression model.

Results: Bias

Results: Standard Errors

