Suspect Research & Statistical Inferences

Jacob Schauer
jms@u.northwestern.edu

Northwestern University
IES Grant R305B140042

SREE 2018
Suspect research practices

- Suspect practices can lead to inaccurate findings (e.g., Hedges, 2017; Lindsay, 2012).

- How much? Depends on which suspect practice...

- Conditional data collection: failing significance, get more data!?

 1. Bias treatment effect estimates
 2. Bias can be large (~50%)
 3. Bias can arise even if no analyses are conducted
Conditional data collection

- John, Loewenstein, & Prelec (2012): >50% of respondents admitted they had collected more data based on a nonsignificant result.

- Fiedler & Schwartz (2016): >30% of respondents admitted to collecting more data in order to render a nonsignificant result significant.

- Simmons, Nelson, & Simonsohn (2011): Inflated type I error rates (~10-20%)

- Related to sequential trials in medicine (Nardini & Sprenger, 2012)
Conditional data collection

- Treatment effect $\theta \neq 0$

- Initial experiment (n subjects in each of treatment & control)
 - Estimate T_0 (mean difference)

- Concomitant variable O correlated with T_0

- Based on O either:
 1. Report T_0
 2. Continue experiment
 - Recruit more subjects (m subjects per arm)
 - Report T_1
Conditional inferences

- We only observe an estimate conditional on O:
 1. $T_0|O$
 2. $T_1|O$

- Bias:
 1. $E[T_0|O] - \theta$
 2. $E[T_1|O] = \frac{n}{m+n} (E[T_0|O] - \theta)$

- If O is correlated to T_0, the treatment effect can be biased.
Model

1. Data are normally distributed, with known variance.

2. n subjects per arm in initial experiment
 - $T_0 \sim N(\theta, 2\sigma^2/n)$

3. m subjects added per arm, whose responses are independent of past observations.
Conditional on significance

- \(O = \mathbf{1}\{ |T_0| > 1.96\sqrt{2\sigma^2/n} \} \); (\(\alpha = .05 \), 2-tailed test)
- Stop if \(O = 1 \), continue if \(O = 0 \)
- \(T_0 \) will be a truncated normal

Distribution of \(T_0 \mid O \)
Collecting data based on nonsignificance

Percent Bias of $T_1 \mid T_0$ Not Significant ($\theta > 0$)
Other concomitant variables

• “If O is correlated to T_0, the treatment effect can be biased.”
 - Me, three slides ago.

• Researchers may observe any number of variables correlated with T_0.
 - Casual observations may be correlated with T_0.
 - If more data are collected based on them, $T_1|O$ can be biased.
 - No analysis of initial data needed.

• How might these variables convey information about T_0?
 - How likely is it that T_0 will be significant given what was observed?
Information about possible significance

- Probabilistic model

- O provides information about how likely T_0 is to be significant:
 - $P[T_0 \text{ significant}|O] = \eta$

- For a given probability of significance (η), a researcher may
 - stop and report $T_0|\eta$
 - collect more data and report $T_1|\eta$

- Assume O conveys only information about the probability of significance.
 - $T_0|O$ has a reweighted normal distribution
Continuing due to improbable significance

Percent Bias of $T_1 \mid P[T_0 \text{ Significant} \mid O] = \eta$

<table>
<thead>
<tr>
<th>η</th>
<th>10%</th>
<th>30%</th>
<th>50%</th>
<th>10%</th>
<th>30%</th>
<th>50%</th>
<th>10%</th>
<th>30%</th>
<th>50%</th>
<th>10%</th>
<th>30%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

percent increase in # of observations

initial power

- 80%
- 60%
- 40%
Unknowable bias

- It may be impossible to determine exactly what information any observation conveys about T_0.

- If it carries *any* information, and the decision to collect more data depends on it, we know that T_1 can be biased.

- We may have no idea how biased a given result is.

- **Ad-hoc data collection can bias a treatment effect estimate even if no analysis of interim data is conducted. It may be impossible to know how much this bias is!**
Conclusions

• Bias from conditionally collected data can be substantial, even if a researcher does not actually run a significance test.

• Pre-registration can improve transparency, and help curtail more passive forms of CDC.

 • SREE!

• Blinding?

• Empirical replication of past results.
References

Thank You!

Jacob Schauer
PhD Student
Department of Statistics
Northwestern University
jms@u.northwestern.edu
Stopping for significance

Percent Bias of $T_0 \mid T_0 \text{ Significant}$
Repeated waves

Percent Bias of $T_k \mid T_{k-1}$ Not Significant

- Initial power
 - 80%
 - 60%
 - 40%

percent bias

percent increase in # of observations
Repeated waves, reporting only significant results

Percent Bias of $T_k | T_{k-1}$ Not Significant: Only Significant Findings
Distributions: probable significance

![Graph showing distributions with labels T₀ and T₀ | O.]
Stopping for probable significance

Percent Bias of $T_0 \mid P[T_0 \text{ Significant} \mid O] = \eta$