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Key points

• Analysis methods for replication studies are tricky.

• Still not a settled matter.

• Analyses of replication studies in the social sciences have
proceeded with some ambiguity, which has led to the use of
methods with poor properties.

• We ought to approach the study of replication as (partially) a
statistical problem.



Outline

1. What are replication studies (direct vs. conceptual)?

2. How can we define replication success/failure statistically?

3. What are the implications for existing methods and resluts?



What is a replication study?



Why replicate?

• Prove or falsify an existing finding.

• Examine sources of experimental variation:

• Vary how an experiment is done

• Conduct seemingly identical experiments



Direct vs. conceptual replications

Direct Replication
• Same procedure/protocol
• Same materials
• Same experimental

units/population

Conceptual Replication
• Vary procedure/protocol
• Vary materials
• Sample from different

population



Empirical research on replications

Major replication research programs in the social sciences
attempted to:

1. Validate experimental protocol with original investigators,
and/or

2. Standardize materials across multiple labs



Empirical research on replications

Study # Exps # Studies Variation? Falsification?
RPP/OSC 100 2 X
RPE 18 2 X
Many Labs 16 37 X X
PPIR 11 11-17 X X



Empirical research: Direct vs. conceptual replications

Direct Replication
• Same procedure/protocol
• Same materials
• Same experimental

units/population

Falsify existing finding

Conceptual Replication
• Vary procedure/protocol
• Vary materials
• Sample from different

population



Why should we focus on analysis methods?



Results of replication research is high-stakes/high-profile

• Replication is foundational to the logic and rhetoric of science:

• “Non-reproducible single occurrences are of no significance to
science.” (Popper, 1959)

• “Science advances on a foundation of trusted discoveries.”
(McNutt, 2014)

• If we can’t re-create the effects of interventions found in
experiments, how do we know they are effective?

• Recent replication research is published in high-impact
journals and cited frequently.



An example: Open Science Collaboration (OSC)

Open Science Collaboration (2015)

• Attempted direct replications of 100 social/behavioral psych
experiments

• Most attempts involved consultation with the original authors

• Determined that 61 of their 100 attempts failed

• Published in Science

• Cited over 2,700 times in academic articles



OSC in the press



What is the proper analysis?

Research programs note a lack of clear, standard methods:
• “There is no single standard for evaluating replication

success,” (OSC, 2015).
• “There are different ways of assessing replication, with no

universally agreed-upon standard of excellence,” (Camerer et
al., 2016).

It has proven difficult to say what “replication” means:
• “Although we have an intuitive sense of what it means for

results to replicate, the meaning becomes less clear the more
closely we look,” (Bollen et al., 2015).

• “The accomplishment of replication was dependent on
contingent acts of judgment. One cannot write down a
formula saying when replication was or was not achieved”
(Shapin & Schaffer, 1985 re: Boyle and Huygens).



Formalizing analyses of replication as an
applied statistics problem



Principles of applied statistics

1. What is it we’re trying to measure?
• What is a relevant operational definition of replication, and

how can we translate that into a parameter?

2. What is the proper analysis method?
• Most powerful tests
• Estimates with low SE

3. What is the best way to collect data?
• Sample size for required power, SE



Model (meta-analysis)

• 𝑘 ≥ 2 studies.
• For the OSC, 𝑘 = 2

• 𝜃𝑖: effect of study 𝑖
• 𝜃𝑖 may vary due to (possibly unknown) differences in

experimental contexts.

• 𝑇𝑖: estimate of 𝜃𝑖

• 𝑣𝑖: variance of the estimate 𝑇𝑖 (e.g., due to sampling or
randomization)

• 𝑣𝑖 ∝ 1/𝑛𝑖

• Assumption: 𝑇𝑖 ∼ 𝑁(𝜃𝑖, 𝑣𝑖)
• Typically, one study 𝑇1, 𝑣1 is already conducted.



What is “replication”?

What does it mean for 𝜃𝑖 to be the same?
• Exact replication: 𝜃1 = … = 𝜃𝑘

• Approximate replication: 𝜃𝑖 are “practically the same”
• Qualitative replication: 𝜃𝑖 are the same sign: e.g., 𝜃𝑖 > 0

Are we interested in only the 𝑘 studies/effects?
• Fixed effects: the studies conducted are the only ones relevant

to replication.
• Random effects: the studies conducted and their effects are

sampled from some population.
• 𝜃𝑖 are random draws from some distribution with:

▶ 𝐸[𝜃] = 𝜇, 𝑉 [𝜃] = 𝜏2



Parametrizing “replication”

Type of agreement

Studies

Parameter

Exact Approximate Qualitative

Fixed Random

𝜃1 = … = 𝜃𝑘 𝜏2 = 0 𝜏2 ≤ 𝜏2
0



Properties of analyses of individual
replications



Definition vs. analysis

• 𝐹 = 𝟏{replication failure}
• 𝐹 = 𝟏{𝜃1 ≠ 𝜃2}

• 𝐷 = 𝟏{analysis says replication failure}

• It is possible that 𝐷 ≠ 𝐹

𝐹 = 0 𝐹 = 1
𝐷 = 0 True success False success
𝐷 = 1 False failure True failure



Example: confidence interval overlap

• Studies fail to replicate if 𝑇1 is not in a 95% CI for 𝜃2.
• As a null hypothesis test:

• 𝐻0: 𝜃1 = 𝜃2

• Test statistic 𝑆 = (𝑇1 − 𝑇2)/√𝑣2

• Compare to a standard normal distribution

• Probability of saying studies failed to replicate when 𝜃1 = 𝜃2 is

1 − Φ ( 1.96
√1 + 𝑣1/𝑣2

) + Φ ( −1.96
√1 + 𝑣1/𝑣2

)

• For OSC studies, this 15–40%!



Probability of an error for “failed” replications
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Correction: 𝑄 test

𝑄 test for exact replication is the UMP test (a.k.a. prediction
interval; Patil et al., 2017).

1. Compute 𝑄 = ∑𝑘
𝑖=1

(𝑇𝑖−�̄�⋅)2
𝑣𝑖

• 𝑘 = 2 ⟹ 𝑄 = (𝑇1−𝑇2)2
𝑣1+𝑣2

2. Under 𝐻0, 𝑄 has a chi-square distribution 𝜒2
𝑘−1

• 𝑘 = 2 ⟹ 𝑄 ∼ 𝜒2
1

3. When 𝐻0 is false, 𝑄 ∼ 𝜒2
𝑘−1(𝜆)

• 𝜆 = ∑𝑘
𝑖=1

(𝜃𝑖− ̄𝜃⋅)2
𝑣𝑖

𝑘=2= (𝜃1 − 𝜃2)2

𝑣1 + 𝑣2

Difference
between
effects

Increase
power by de-
creasing 𝑣2



Example

OSC replication of Payne et al. (2008)

• 𝑇1 = 0.753, 𝑣1 = 0.0662, 𝑇2 = 0.304, 𝑣2 = 0.0229

• 𝑆 = 2.96 > 1.96 ⟹ Failure to replicate
• Probability of concluding replication failed when 𝜃1 = 𝜃2 is

32%

• 𝑄 = 2.263 < 3.841 ⟹ Did not fail to replicate



Power of 𝑄 test

Was this test powerful? If not, what could they do differently?
• Power to detect failed replications depends on |𝜃1 − 𝜃2|, and

increases when 𝑣2 decreases

• Power to detect |𝜃1 − 𝜃2| = 0.5 is 38%

• Even if 𝑣2 → 0, the power would only be 49%

• It is impossible to design a single replication of Payne et
al. (and other OSC studies) to detect |𝜃1 − 𝜃2| = 0.5
with much power.

• This is because the power of the 𝑘 = 2 design is limited by
𝑣1.



Implications

1. Metrics to determine replication failure/success can be
inaccurate (e.g., low power or uncontrolled type I error rate).

• Schauer et al. (under review) show that averages of inaccurate
individual determinations make for biased estimates of “failure
rates.”

2. It will often be impossible to design a replication (or several)
in order to determine replication failure/success with high
power.

• The sensitivity of anlayses is limited by the design of the initial
study (Hedges & Schauer, in press).

3. Potential re-framing of “replication” to mean:
• Multiple studies obtain similar effects: consistency of

𝜃1, … , 𝜃𝑘 versus 𝜃1 is different from 𝜃2, … , 𝜃𝑘.
• Power no longer limited by original study (Hedges & Schauer,

2019).



Thank you!
jms@u.northwestern.edu
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Additional slides



Properties of aggregate patterns of replication



Proportion of failed replications

Replication crisis is about the prevalence of failed replications.
• 𝑁 findings/experiments in a population.
• 𝑚 experiments subject to replication attempts.
• 𝑇𝑖𝑗, 𝑣𝑖𝑗, 𝜃𝑖𝑗 for study 𝑖 of experiment 𝑗
• 𝐹𝑗 = 1 if replication 𝑗 failed.

• 𝐹𝑗 = 𝟏{𝜃1𝑗 ≠ 𝜃2𝑗}
• 𝐹𝑗 = 𝟏{𝜃1𝑗, 𝜃2𝑗 different signs}

• 𝐷𝑗 = 1 if analysis determines replication failure.
• 𝐷𝑗 = 𝟏{𝑄 > 𝑐𝛼}
• 𝐷𝑗 = 𝟏{𝑝1𝑗 < 0.05, 𝑝2𝑗 > 0.05}

• What we want is 𝜋 = 1
𝑁 ∑𝑁

𝑗=1 𝐹𝑗

• Typically, what is reported is ̂𝜋 = 1𝑚 ∑𝑚
𝑗=1 𝐷𝑗

• 61% failure rate for the OSC.



Estimating 𝜋: sample selection

Are the 𝑚 experiments representative of the population?
• It is often difficult to justify this (Gilbert et al., 2015).
• It is also unclear how to re-weight observations to minimize

this issue.

If not, what about treating 𝑚 = 𝑁 so that the sample is the
population you care about?

• 𝜋 = 1𝑚 ∑𝑚
𝑗=1 𝐹𝑗

• ̂𝜋 = 1𝑚 ∑𝑚
𝑗=1 𝐷𝑗



Bias

𝐸[ ̂𝜋] = 𝜋( ∑
𝑗∶𝐹𝑗=1

𝑃 [𝐷𝑗 = 1|𝐹𝑗 = 1]⏟⏟⏟⏟⏟⏟⏟
Prob. of
detecting a true
failure (𝛽𝑗)

+ ∑
𝑗∶𝐹𝑗=0

𝑃 [𝐷𝑗 = 1|𝐹𝑗 = 0]⏟⏟⏟⏟⏟⏟⏟
Prob. of saying
a successful
replication
failed (𝛾𝑗)

)

• Typically, 𝛽𝑗, 𝛾𝑗 vary depending on 𝜃𝑖𝑗, 𝑣𝑖𝑗

• If 𝛽𝑗 = 𝛽 and 𝛾𝑗 = 𝛾, ∀𝑗 = 1, ..., 𝑚
• Bias(�̂�) = 𝜋(𝛽–𝛾–1) + 𝛾



Example: Bias
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Alternatives

In multiple comparisons, methods for estimating 𝜋 require
procedures for 𝐷𝑗 to have controlled error rates.

• Parametric mixture models (Tamhane & Shi, 2009)
• of 𝑝-values: 𝑝𝑗 ∼ 𝜋 Beta(𝛼, 𝛽)⏟⏟⏟⏟⏟

failures

+(1 − 𝛼) 𝑈[0, 1]⏟
successes

• of test statistics: 𝑇1𝑗−𝑇2𝑗
√𝑣1𝑗+𝑣2𝑗

∼ 𝜋 𝑁(𝜇, 1)⏟
failures

+(1 − 𝜋) 𝑁(0, 1)⏟
successes

• Require stronger assumptions and mixing components that are
clearly separated.

• Moment estimator that is approximately unbiased (Storey,
2002).

• RPP: �̂� = 26%
• RPE: �̂� = 12%



Discussion

• Applied statistics and meta-analysis provide a useful
framework for approaching replication research.

• Choices about the proper definition and analysis will depend
on the type of experiment, and the goal of the research.

• Studying replicability via multiple replication studies to
examine heterogeneity may allow for more sensitive analyses.

• Aggregating individual determinations about replication across
programs that examine several experiments can be misleading.


