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State longitudinal data systems (SLDS) are legally required to protect the privacy of students 
and so states have been cautious about sharing data with external researchers. However, other 
government bodies, such as the Bureau of Labor Statistics, have experimented with releasing 
synthetic data generated from methods related to multiple imputation. The idea is that the real 
data is used to generate a series of synthetic datasets on which analyses can be conducted and 
pooled. Doing so can improve the utility of the released data in that analyses conducted on 
synthetic data can closely mirror those conducted on the real data. It can also improve privacy, 
since none of the data is actually real. In this article, we apply these procedures to data from 
eight states, and assess how feasible these procedures are, how well they preserve the data utility, 
and how well they protect privacy. We find that while the procedure can be computationally 
intensive, that the utility of the data is good, and the risk of disclosure is low. 
Keywords: data privacy, data disclosure, synthetic data, SLDS 

 

1. INTRODUCTION 
US state longitudinal data systems (SLDS) collect data that has the potential to inform 

improvement in education, but that potential can be limited by concerns over security (Conaway, 

et. al., 2015). SLDS are legally required to protect the privacy of students under laws like the 

Family Educational Rights and Privacy Act (FERPA), and so it is not entirely surprising that 
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states have been cautious about sharing data with external researchers. Sometimes this involves 

denying data requests outright. Other times, states apply various data masking procedures in 

order to hedge against potential data disclosures. For instance, the few states that offer public-

use data apply microsuppression (also called “small cell suppression”) rules to delete potentially 

identifiable records from their data prior to release (e.g., Massachusetts, 2014; North Carolina, 

2009). This has even occurred with data shared under secure data use agreements (DUA). 

However, such procedures can limit the utility of the data that is actually shared. Various 

researchers have pointed out that microsuppression can lead to substantial bias in important 

quantities (Seastrom, 2010; Levesque, et. al., 2015) including with education data (Authors, 

under review). This raises the question of how to expand data access without greatly sacrificing 

data quality. 

 A potential solution to this problem is the use of synthetic data. Synthetic data 

disclosure methods work by releasing multiple datasets that look like the actual data, but that 

are generated randomly (Rubin, 1993). Part of their appeal is that synthetic datasets can be 

generated according to the full joint distribution of the variables conditioned on the observed 

real data, meaning that the joint distribution of variables in the synthetic data will be similar to 

that of the observed data. Thus, analyses using quality synthetic data should yield very similar 

results to analyses using the original data. Simulation studies show that such methods can 

preserve many relationships between variables, though these have necessarily involved rather 

small samples sizes (typically tens of thousands of individuals) and relatively small numbers of 

variables (typically dozens) (e.g., Raghunanthan, Reiter, & Rubin, 2003; Reiter, 2005b; Singh, 

Yu, & Dunteman, 2003). There have, however, been demonstrations of the methods in real, 

large datasets with many variables (Reiter, 2005a; Dreschsler, et al., 2008; Singh, Yu, & 

Dunteman, 2003; Prada et al., 2011).  
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One can also argue that synthetic data methods provide strong protections against 

disclosure, because none of the actual data gets released. Studies of synthetic data generated 

from the US Current Population Survey (Reiter, 2005a) and the German establishment survey 

(Drechsler, et al., 2008) both concluded that disclosure risk was very low. Further, these studies 

demonstrated that the estimates derived based on a variety of analyses of the synthetic data are 

quite similar to those run on the real data. 

 While existing demonstrations and simulations appear promising, less work has been 

done on the utility and feasibility of these methods for SLDS. This article examines the process 

of generating synthetic datasets using SLDS data. As part of this examination, we attempted to 

create synthetic datasets for various cross sections of real state education data. In the following 

sections, we describe the process we followed and highlight potential barriers for SLDS in 

generating synthetic data. We then investigate the extent to which important statistics from the 

real data are preserved in the synthetic data. Finally, we describe potential disclosure risks and 

limitations of this approach. 

2. SYNTHETIC DATA METHODS 

The theory of generating and analyzing synthetic datasets emerged from work on multiple 

imputation (Rubin, 1993). Both synthetic data and multiple imputation methods use a similar 

machinery, though with one key difference: where multiple imputation fills in missing fields 

with random draws from some probability distribution, synthetic data methods replace all fields 

with random draws. In this section we provide an overview of the theory for constructing and 

analyzing synthetic data. We discuss some important considerations for doing so, including how 

to handle missing data, and the challenges these considerations present to SLDS. 
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2.1. GENERATING SYNTHETIC DATASETS 

Following the notation of Raghunathan et al. (2003), denote a state dataset by P, and suppose it 

contains variables X = [X1, …, Xq] and Y = [Y1, …, Yp], so that we can write P = [X, Y]. States 

may not wish to release P to external researchers because of concerns over student privacy. 

However, rather than releasing P, they could instead release m > 1 synthetic datasets P(i) = [X(i), 

Y(i)] for i = 1, …, m. One reason to release multiple synthetic datasets is that this allows for more 

accurate computation of standard errors. It should be noted that states could also release random 

samples from each synthetic dataset P(i). In either case, the process of creating and releasing 

synthetic data involves generating synthetic P(i). 

 The P(i) can be either fully or partially synthetic. Partially synthetic data may be used 

when the variables in X do not contain any personally identifiable or sensitive information. If 

there are no privacy constraints on releasing X, then there may be no need to create synthetic 

X(i), and hence the synthetic data can be written as P(i) = [X, Y(i)]. We say these datasets are 

partially synthetic since the true values of X are released in each dataset. Conversely, with fully 

synthetic data, different synthetic X(i) are released with each dataset P(i) = [X(i), Y(i)], which may 

be more appropriate if there are concerns regarding student privacy and the variables contained 

in X. In this article, we will focus on partially synthetic data, where school and district-level 

indicators are preserved. This can be thought of, loosely, as taking existing schools and 

populating them randomly with students whose data look similar to the students that actually 

attend those schools. 

 The synthetic P(i) = [X(i), Y(i)] are generated using a similar approach as multiple 

imputation. For each i = 1, …, m, P(i) is drawn from the posterior predictive distribution f(P(i) | 

P). However, computing the full multivariate distribution across all variables in P and then 

drawing P(i) can be difficult, and it is often simpler to do this via a series of conditional 
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probability models (Reiter & Raghunathan, 2007). For a given variable Yj, this works by 

modelling the distribution Yj(i) | X, Y(j), where Y(j) is the data in Y excluding Yj. The posterior 

predictive distribution f(Yj(i) | X, Y) is computed for this model and the values of Yj in the data 

are replaced with draws from f(Yj(i) | X, Y). This process cycles through each variable in P 

multiple times, and under certain conditions is equivalent to drawing P(i) from f(P(i) | P) (Liu et 

al., 2014). 

 There are many considerations that go into specifying these conditional probability 

models that can affect the utility and security of synthetic data. An important consideration is 

the model used for each variable. One could use standard parametric models for Yj | Y(j), X, 

including normal linear regression, Poisson regression, or logistic regression, depending on the 

nature of Yj (Reiter & Raghunathan, 2007). Particularly if linear models are used, one will need 

to specify in advance any interactions or basis expansion terms (e.g., polynomial terms). 

Conversely, models for Yj | X, Y(j) can be semiparametric, such as classification and regression 

tree (CART)-based methods (Little, Liu, & Raghunathan, 2004). 

 Finally, imputation/synthesis models can incorporate auxiliary variables Z, where Z 

will neither be synthesized nor released, but rather can be used to improve the accuracy of the 

posterior predictive distributions (see Hsu, 2007). For instance, if a state has internal evaluations 

of schools that it will not make public, it can still use that information in generating synthetic 

data. 

2.2. HANDLING MISSING DATA 

Since synthetic data methods are built around the same theory as multiple imputation, they can 

naturally handle situations where data are missing from P (Reiter, 2004). Reiter (2005a) argues 

that multiple imputation can be done prior to synthesis, which would mean that states would be 
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in charge of imputing missing values. In this framework, states would use standard multiple 

imputation methods to generate n imputed datasets P1, …, Pn based on P. Then, mn synthetic 

datasets Pk(i) (i = 1, …, mn) are generated for each imputed Pk. For example, if a SLDS wanted 

m = 50 synthetic datasets but the original dataset P contains missing data, then they would create 

n = 5 imputed datasets and then generate mn = 10 synthetic datasets from each imputed dataset.  

 It is worth noting that the choice of imputation model can affect what the imputed data 

Pk look like, and hence the validity of inferences based on analyses of the synthetic data Pk(i). 

While this is true for any analysis involving missing data, in this context, analysts do not 

necessarily have direct control over the manner of imputation. Instead, Reiter (2005a) sees this 

as part of the workflow of the state agencies. Put another way, in the process of imputing missing 

data, states are inherently making assumptions about how and why it is missing, which can 

impact later analyses if these assumptions are not met, or if subsequent analytical models are 

not congenial with the imputation model.  

While this article examines the imputation-synthesis framework, this is not the only way 

to handle missing data. One option would be to generate missing values in synthetic data. This 

would also be appropriate for scenarios where the missingness is of interest in and of itself, such 

as in studies of students who opt out of standardized tests. Alternatively, if missing data is 

merely a nuisance, then generating synthetic data with missingness would give the analyst 

greater control over the methods used to handle it. For instance, given synthetic data  P(1), …, 

P(m) each with missing values, an analyst could multiply impute complete datasets Pk(i). They 

could even use more complex imputation methods that rely on fewer assumptions. 
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2.3. ANALYZING SYNTHETIC DATA 

Suppose an external researcher, which we call the analyst, wishes to estimate some quantity Q 

from the synthetic data. The general approach to doing so is to pool estimates from each 

synthetic dataset P(i). Let qi be the estimate of Q based on dataset P(i), and let vi be the variance 

of that estimate. Under certain conditions (see Raghunathan, 2003), valid inferences regarding 

Q can be obtained with the following quantities: 
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Here, !" is just the mean of the qi, 2̅ is the mean of the vi, and B is the variance between the qi. 

The pooled estimate !" is used as an estimate for Q, and its variance can be estimated by: 

45 = 61 +
1
&8, − 2̅ 

While it is possible for Vq < 0, this is less common when m is large. However, Raghunathan et 

al. (2003) propose a more complicated variance estimator that will always be positive. 

 It is worth noting at this point that the variance Vq depends on a term (1 + 1/m)B that 

decreases as m increases. Thus, releasing more synthetic datasets can lead to more precise 

estimates. However, the following sections demonstrate that generating additional datasets is 

more computationally expensive. Thus, states must determine how large an m yields adequately 

precise estimates without overburdening their computational resources. 

3. EMPIRICAL INVESTIGATIONS: KERNEL DATASETS AND METHODS 

While the previous sections described the theory behind synthetic data disclosure, it is worth 

asking how feasible implementations of this theory would be for SLDS. To that end, we 

attempted to create synthetic datasets using actual SLDS data from different states. Throughout 
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this process, we investigated resources that might be required by states to construct synthetic 

data, software that is publicly available, and potential bottlenecks in this process. In this section, 

we describe the methods we used, and discuss the implications and limitations of those methods. 

3.1. KERNEL DATASETS  

As part of this investigation, we obtained data from eight states. Some of these datasets were 

longitudinal, while others were large cross sections. To focus our efforts, we created two cross 

sections of data for each state: one of fourth graders (for a given year) and one of eighth graders 

(for the same year). We refer to these as the kernel datasets. In total, these kernel datasets 

contained over 960,000 distinct students. Since the data furnished covered different time frames, 

the years of the cross sections vary by state. The resulting cross sections range from 2009 to 

2012, and contain basic demographic information, including a student’s school, race, gender, if 

they receive free or reduced-priced lunch (FRL), and whether they have limited English 

proficiency (LEP). They also include state achievement test scores in various subjects, though 

all datasets (across states and grades) have scores for math and reading. All of the kernel datasets 

involved some missing fields. 

 Across the 16 kernel datasets, we encounter a range of possible data collection, 

analysis, and disclosure issues. The states range from small to large, diverse to relatively 

homogenous, and vary in the share of urban and rural schools. Moreover, each state collects 

slightly different demographic information. This involves states tracking different variables; for 

instance, some states document student homelessness or Native Americans’ tribal affiliations. 

Alternatively, some states have different types of designations for the same variables; for 

example some states indicate whether a student is proficient in English, while others describe 
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that proficiency from low to high. Overall, we feel that these kernel datasets provide a suitable 

test of the pipeline we used to generate synthetic data. 

4. PIPELINE: FROM REAL TO SYNTHETIC DATA 

Our general approach was to impute missing values prior to generating synthetic data as 

discussed in a previous section. Thus, for each kernel dataset, we used multiple imputation to 

construct five (5) complete datasets. Then, for each imputed dataset, we generated four (4) 

synthetic datasets for a total of m = 20 datasets per kernel. In theory, it would be possible for 

states to release all 20 datasets, release random samples from them, or release random samples 

from a subset of them. However, we chose 20 datasets in order to improve the likelihood that 

relationships between variables are preserved and estimated well.  

To study different possible configurations of this pipeline, we used two different 

approaches to imputing and synthesizing data: one that imputes and synthesizes data with a 

series of parametric models and one that uses a series semiparametric classification and 

regression tree (CART) models. For the parametric approach, both imputation and synthesis 

rely on a linear model to predict the values of a given variable. A standard OLS was used for 

continuous variables, and multinomial logistic regression was used for categorical variables. 

These models use every variable (including school and district) and some pre-specified 

interactions at each synthesis step. Draws from the posterior predictive distribution are 

generated from these models. 

Conversely, with the semiparametric approach, we used CARTs to predict a given 

variable using every other variable (except school and district). Note that one need not specify 

a functional form or interactions for CARTs. Moreover, draws from the posterior predictive 

distribution from CARTs are taken via Bayesian bootstrap samples. Unlike the parametric 
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approach where values are generated at random according to a given parametric distribution, 

the Bayesian bootstrap involves re-sampling actual values in the data, and then choosing one at 

random to fill in a specific cell (see Kim, 2002; Siddique et al., 2008). 

A desirable feature of imputation and synthesis models is that they ought to be at least 

as general as the analytic models used, often referred to as congeniality (see Meng, 1994). Thus, 

any relationships between variables, including interaction terms in analytic models that one 

might want preserved in the synthetic data should be included in the imputation/synthesis 

models. For instance, if we want to preserve the relationship between math achievement for 

gender and FRL status (i.e., for males who receive FRL), then an interaction between gender 

and FRL should be in the model used to synthesize math scores. This is done explicitly when 

specifying models for the parametric approach. However, for the CART models, important 

interactions are not modelled explicitly, but rather are discerned from the data. 

In total across two cross sections for eight states (16 kernel datasets) and two 

imputation/synthesis models (parametric vs. semiparametric), we wound up with 640 synthetic 

datasets. Table 1 shows the parametric models used for both imputation and synthesis. 

Table 1: Models used for imputation/synthesis 

Variable Type Variables Parametric Model Semiparametric Model 
Continuous Test scores for reading, 

math, etc. 
Normal linear 
regression 

Regression tree 

Binary  Gender, migrant, gifted, 
LEP (for some states), 
FRL (for some states) 

Logistic regression Binary classification 
tree 

Categorical 
with multiple 
classes 

Race, LEP (for some 
states), FRL (for some 
states) 

Multinomial 
logistic regression 

Multiclass classification 
tree 
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5. REFLECTIONS ON SYNTHETIC DATA PIPELINE 

Our general pipeline follows directly from the literature on synthetic data disclosure (e.g., 

Raghunathan et al., 2003; Reiter, 2005b; Reiter & Raghunathan, 2007). We chose to use m = 20 

synthetic datasets to help ensure quantities of interest are estimated as precisely as possible 

without overburdening computation. Since the process of imputing and then synthesizing data 

has been studied and implemented repeatedly in the literature, we consider this to be an 

empirical test not just of the theory, but also the feasibility for states. It is worth noting that 

while Reiter (2004, 2005a,b) points out that enhanced privacy can be attained by releasing 

random samples of synthetic data, we did not take this step in our investigation. While this is 

certainly something states could do, we opted not to for a few reasons. First, a random sample 

of synthetic records will contain less information than the full synthetic dataset itself. Since we 

were interested in the utility of synthetic data, we felt that using the full dataset, rather than a 

sample, would provide a clearer picture of that. Moreover, precisely how the random sample 

should be generated is not a settled matter, particularly in education.  

 An important implication of this pipeline is that using the same general approach for 

each kernel dataset requires a replicable and streamlined workflow. The data we obtained varied 

in quality and content, and it is entirely possible to tailor a synthetic data pipeline to each 

individual dataset. However, we attempted to minimize such adaptations for a few reasons. First, 

we felt that demonstrating that a procedure is repeatable and does not require substantial 

adaptation from state to state had some value. In particular, we focused on building a 

reproducible pipeline using free, open-source software (see the following section), which would 

limit the cost to states should they use synthetic data methods in the future. Moreover, 
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standardizing this procedure allowed us to identify general bottlenecks, but also investigate how 

limitations differed across states and grades.  

5.1. SOFTWARE 

We wanted to use software that may be openly or freely available to states to minimize the 

additional cost of creating synthetic data. To that end, we focused on two potentially useful 

libraries. The first is SRCware, a stand-alone version of the IVEware library from SAS, 

developed by the University of Michigan (https://www.src.isr.umich.edu/software/). This 

efficiently runs its own imputation-to-synthetic data pipeline based on the parametric models 

described in the previous sections. 

We also used the ‘mice’ and ‘synthpop’ packages in the R programming language. At 

the time of our writing, there was no standalone R package that did both imputation and 

synthesis. Thus, we imputed datasets using ‘mice’, and then constructed synthetic datasets using 

‘synthpop’ (Nowok et al., 2016). While both packages are designed to use a variety of models, 

we used them to implement CART-based methods.  

5.2. COMPUTING REQUIREMENTS 

An important barrier to using synthetic data methods involves technical capabilities. Between 

the two data synthesis methods and software tested (SRCware’s impute/synthesize functionality 

and R’s MICE imputation and synthpop data synthesis), there is a wide range of computational 

bottlenecks and concerns. For reference, the State 6 fourth-grade kernel dataset contained just 

over 75,000 students with 19 variables; SRCware was able to first create imputed datasets, and 

then 20 synthetic replicates of that dataset in 75 minutes. When running in parallel, the 

semiparametric methods took 42 minutes to run an equivalent imputation and synthesis in R. 
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All methods were implemented on a 24-core machine with 2400 MHz CPUs, which is 

considerably more powerful than a standard desktop computer. We only utilized five (5) of the 

24 cores when exploring the methods since most desktop and laptop computers will not have 

considerably more than five cores.     

There are several factors that will affect the time and resources required to create 

synthetic data. Two obviously important factors are the size of the original dataset and the types 

of data it contains. Large datasets will require greater computing time and memory. Moreover, 

if the data contain several categorical variables each with many different levels, this can increase 

the time required to fit imputation/synthesis models.  

A very important determinant of computational demand and runtime is the specification 

of imputation/synthesis models. Both MICE and synthetic data methods use fully conditional 

models for each variable in the original dataset, so that a given column Yj is being predicted 

based on other variables in the data. In our approach, we used all of the other variables in the 

data to train both the imputation and synthesis models. One may use more parsimonious models 

in exchange for quicker computation, however this can result in more variation in the synthetic 

data, and hence less precise or accurate analyses. 

The class of imputation/synthesis models is also a key driver of computational 

complexity. For example, there is the option to fit random forest models for synthesis using the 

synthpop package in R. By default, the random forest model is an ensemble of 500 CARTs. This 

means that for each variable being synthesized with a random forest within each imputed 

dataset, the process would require 500 bootstrapped samples and 500 fitted CARTs, making this 

method wholly unscalable for a dataset with greater than about 50,000 students, as evidenced in 

the plots below: 
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Figure 1: Computing Requirements of Imputation/Synthesis with Random Forests 

Using random forests for imputation/synthesis required 40GB of resident memory (our 

servers have 120GB) to process 30,000 students, and computation time grew in a polynomial 

manner. This means that each additional record added to the dataset requires an even greater 

increase in computation time. Using random forests on all 75,000+ students and 20 features 

(including each student’s school identifier) crashed our pipeline. Thus, a simpler semiparametric 

model based on a single CART (rather than an average of several) was chosen for its speed, low 

memory demand, and for a tree’s tendency to “over-fit” the observed data. CARTs and 

parametric models, including those run in SRCware, typically consumed well under 10GB of 

resident memory during the imputation and synthesis stages. Put simply, the key tradeoff is that 

more complex models, like random forests, may require considerably more computational 
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resources than states may be willing or able to dedicate, however they are likely to result in 

much better predictions and hence potentially more useful synthetic data. 

Perhaps the largest factor driving time/resource demand is the sequential manner in 

which the parametric and non-parametric methods run, by default. Since we imputed five (5) 

datasets each of which were used to create four (4) synthetic datasets, we were able to easily run 

both the imputation and synthesis stages in parallel to realize significant gains in computation 

time. This worked by first giving each of the five (5) active cores a single copy of the original 

dataset, and having each core generate a single imputed dataset in parallel. Then, we distributed 

to the five cores each a single imputed dataset, and used each core to generate four synthetic 

datasets. For a state like State 6, which had over 75,000 fourth-graders, this process took a grand 

total of 42 minutes. In contrast, running our pipeline sequentially would impute datasets one at 

a time, and then synthesize datasets one at a time. For State 6, a single imputation in R took 

about 30 minutes, and synthesis an addition 3-5 minutes. For five imputed datasets and 20 

synthetic datasets, this would take nearly four hours. Truly distributed computing that dispatches 

imputations and synthesis work across separate servers (e.g. by using the message passing 

interface, Apache Hadoop, etc.) would further allow states to speed up the imputation/synthesis 

pipeline even further by enabling parallelization not just across cores but across cores within 

separate servers. 

5.3. DATA QUALITY 

Another important finding regarding requirements involves the data we were furnished. The 

pipeline for generating synthetic data requires that a somewhat “clean” dataset be fed into the 

process.  However, the quality of data and reporting systems tends to vary across states, which 

can be a very important factor in workflow. Some states have centralized and integrated systems 
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that capture lots of information and store it in relational databases. The data furnished by such 

systems required very minor effort to develop kernel datasets. Conversely, some states furnished 

data that required considerable effort to produce something fit for the pipeline. In some cases, 

the relevant data on a student was distributed across multiple tables. Some of these tables were 

not designed to be relational, which meant that, for instance, students did not have unique 

identifying IDs, or their IDs differed across tables. In other words, just getting raw data into a 

form appropriate for synthetic data methods can be a stumbling block in and of itself; when raw 

data quality proved to be an issue, often greater time and effort was spent on data preparation 

than on synthesis. 

6. UTILITY OF SYNTHETIC DATA 

As an initial evaluation, we were interested in how well the synthetic datasets recaptured 

important statistics in the real data. This includes marginal means and variances, as well as 

conditional means and variances, which serve as a proxy for relationships between variables. 

Since the synthetic data were derived from imputed datasets, and there is no guarantee that the 

original data (with missing values) and the imputed data have the same moments, we used the 

imputed data as the benchmark. In other words, we consider the true mean (µtrue)  of a variable 

as the pooled imputed means. Likewise, the true variance (9:;<=0 ) is the average of the variances 

within imputed datasets. 

For continuous variables such as test scores, we calculated two statistics to check utility. 

First, we calculated a standardized mean difference   

>?@ =
ABCD −	A:;<=

σ:;<=
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where µsyn is the pooled synthetic mean and µtrue and σtrue are the true mean and square root of 

the true variance as described above. A SMD of zero would indicate a perfect recapturing of the 

true mean. A positive SMD would indicate that the synthetic mean is larger than the true mean 

while a negative SMD would indicate that the synthetic mean is smaller than the true mean. We 

also calculated the percent mean difference in the variance as: 

F@ =
9BCD0 −	9:;<=0

9:;<=0 		 

where 9BCD0  is the mean of variances within synthetic datasets. A PD of zero would indicate a 

perfect recapturing of the true variance. A positive PD would indicate the synthetic variance is 

larger than the true variance while a negative PD would indicate that the synthetic variance is 

smaller than the true variance. 

For categorical variables (race/ethnicity, gender, and FRL, ELL, special education, and 

gifted status), we calculated the odds ratio by level. For example, for gender, we calculated the 

odds ratio of male students in the synthetic and imputed data, using 

GH =
IBCD/(1 −	IBCD)
I:;<=/(1 −	I:;<=)

 

where IBCD and I:;<= are the averaged fractions of male students across synthetic and imputed 

datasets, respectively (as with the means above). An OR of 1 would indicate that the synthetic 

proportion recaptures the true proportion. An OR greater than 1 would indicate that the synthetic 

proportion is greater than the true proportion while an OR less than 1 would indicate that the 

synthetic proportion is less than the true proportion.  

We were also interested in how well the synthetic data preserved conditional 

distributions. Within each categorical variable level, we calculated the standardized mean 

difference of test scores (e.g., standardized mean difference for males or minority students), and 

examined the percent difference in the conditional variances. 
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Finally, since education data is naturally nested, we were interested in how well test 

scores were preserved within schools. To examine this, we compute the school-level intra-class 

correlation (ICC), which is the proportion of the variation in test scores attributable to 

differences between schools (see Raudenbush & Bryk, 2002). We report percent differences 

between the synthetic and “true” ICCs in the following sections. We also calculated standardized 

mean differences by school. Here, the true mean is the school mean averaged across imputed 

datasets, and the true variance is the average within-school-within-dataset variance. In order to 

obtain sensible results, we excluded schools and districts with five or fewer students when 

calculating standardized mean differences (but did not exclude them when computing ICCs).  

6.1. MARGINAL DISTRIBUTIONS 

Table 2 summarizes the similarity between statistics computed on the synthetic data versus the 

real data using the metrics described above. Differences in the mean, variance, and ICC are 

computed for each test, state, and grade, and this table reports summaries of those computed 

differences. For both math and reading achievement, Table 2 shows various quantiles of (1) 

standardized mean difference in test scores, (2) the percent difference of the total variation in 

test scores, and (3) the percent difference of the school-level intra-class correlations. Results 
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Table 2: Marginal distritubtions of synthetic data compared to real data 
Utility of Synthetic Test Scores: Marginal Distributions 

	 	 Parametric Models (SRCware) Semiparametric Models (synthpop) 
Variable Metric Min 25% Median 75% Max Min 25% Median 75% Max 

Math	
Achievement	

Standardized	 mean	
difference	 -0.10	 0.00	 0.00	 0.00	 0.15	 -0.01	 0.00	 0.00	 0.00	 0.01	

%	Difference	in	Variance	 -22%	 -3%	 0%	 1%	 12%	 -12%	 -2%	 -1%	 0%	 0%	

%	Difference	in	School	ICC	 -45%	 -20%	 -11%	 -4%	 0%	 -100%	 -100%	 -100%	 -100%	 -98%	

Reading	
Achievement	

Standardized	 mean	
difference	 -0.05	 -0.02	 0.00	 0.00	 0.01	 -0.01	 0.00	 0.00	 0.00	 0.01	

%	Difference	in	Variance	 -16%	 -4%	 -1%	 1%	 5%	 -12%	 -2%	 -1%	 -1%	 1%	

%	Difference	in	School	ICC	 -52%	 -14%	 -4%	 0%	 10%	 -100%	 -100%	 -100%	 -100%	 -99%	

Utility of Synthetic Categorical Variables: Odds Ratios 
	 	 Parametric Models (SRCware) Semiparametric Models (synthpop) 

Variable Category Min 25% Median 75% Max Min 25% Median 75% Max 
Gender	 Female	 1.00	 1.00	 1.00	 1.00	 1.00	 0.99	 1.00	 1.00	 1.00	 1.02	
FRL	 Yes	 0.86	 1.00	 1.01	 1.05	 2.30	 0.84	 0.99	 1.00	 1.00	 1.08	
LEP	 Yes	 0.74	 1.02	 1.15	 1.38	 3.04	 0.94	 0.98	 1.00	 1.01	 1.16	

Race	

White	 0.66	 0.92	 0.95	 0.99	 1.00	 0.97	 1.00	 1.00	 1.01	 1.13	
Hispanic	 0.85	 0.99	 1.00	 1.00	 1.65	 0.86	 0.99	 1.00	 1.00	 1.02	
Black	 0.75	 1.00	 1.00	 1.01	 1.09	 0.93	 0.99	 1.00	 1.00	 1.04	
Asian	 0.64	 1.00	 1.02	 1.50	 27.47	 0.12	 0.99	 1.00	 1.01	 1.10	
Other	 1.01	 1.03	 1.11	 1.40	 1.72	 0.98	 1.00	 1.01	 1.02	 1.03	
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are broken out by synthesis model: parametric versus semiparametric. We note that differences 

between these in the table are due to the models and not the software used. 

 What can be seen in the panels on test scores is that both methods tend to preserve the 

mean test score well, so that the standardized difference between the synthetic and “real” mean 

is typically smaller than a hundredth of a standard deviation. Both methods also preserve the 

variance of those distributions as well, so that the synthetic test score variance is within 0-3% 

of the real test score variance. Thus, the first two moments of the distribution of both test scores 

tended to be preserved by both synthesis methods. 

 Not only do the synthetic datasets recapture the mean and variance of test scores, often 

they retain entire distribution of test scores. Figure 2 shows the distribution of math scores in 

eighth grade for State 3. The distribution of the synthetic test scores is shown in red, the 

distribution of the real test scores is shown in blue; their overlap appears purple. In the left panel, 

we see the results of parametric synthesis models, which produce a reasonable approximation 

of the true distribution of math achievement, but do not properly cover the upper tail of the 

achievement distribution. However, in the right panel, the real and synthetic distributions are 

nearly identical. The difference in these plots may arise from two factors related to the tendency 

of CARTs to overfit the data. The first is that CART models are more flexible, and hence have 

lower bias, as discussed in the statistical learning literature (see Hastie et al., 2009). Moreover, 

because synthetic values generated by CART are from bootstrap samples, the synthetic data 

contains “real” values that have been swapped between records. Thus, it is not entirely surprising 

that the distribution of scores is so similar for the semiparametric synthesis approach. 

 However, both methods tend to understate school-level ICCs. The parametric models 

tend to produce ICCs that are within 10% of the real ICCs, but the semiparametric models
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Figure 2: Marginal Distributions of Math Scores. This plot shows the marginal distribution of 
math test scores for synthetic data (red) and real data (blue) for eighth graders in State 3. 

 
produce ICCs that are considerably smaller. To understand why this is, note that preserving the 

ICC in synthetic data requires preserving school mean achievement scores in the synthetic data. 

Since the parametric models explicitly model test scores as a function of school for both 

imputation and synthesis, this means that school mean test scores are likely to be captured in the 

synthetic data. Conversely, for CARTs, schools will only be used if they greatly improve 

predictions (e.g., of test scores). Thus, schools do not always play a substantial role in CART 

models, and hence school mean test scores in the synthetic data may differ substantially from 

the true school mean test scores. Further research into using hierarchical linear models as the 

synthesizer method might help further capture the nested variance structure than relying on a 

linear or CART model alone.  

We can get a clearer sense of this by looking at Figure 3, which shows the standardized 

mean difference between each school’s math achievement in the real versus synthetic data for 

eighth graders in State 3. Schools are ordered from smallest to largest standardized mean 

difference. In the top panel of the figure, we see the results from the semiparametric models, 

which exhibit substantial differences in mean math scores for schools. However, in the bottom 
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panel, which shows the results from the parametric models, the differences are considerably 

smaller. 

 
Figure 3: School Mean Achievement. This plot shows the standardized mean difference in math 
achievement for schools in State 3. 

 
The bottom panel of Table 2 shows that the demographic composition of the synthetic 

data is quite similar that of the real data. For each demographic category, the table shows the 

odds ratio of proportions computed on the synthetic data versus the real data. The odds ratios 

for gender are very close to 1.0, which indicates that there are about the same proportion of 

females in the real and synthetic datasets. For the other demographic categories most datasets 

had odds ratios near 1.0 as well, including FRL and LEP status, as well as racial subgroups.  

However, not all odds ratios in that panel are small. Indeed, when datasets contain only 

a few students that have a given demographic profile, models used to predict the proportion of 
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such students become less accurate. As a result, there may be more or fewer such students in the 

synthetic data than in the real data. This can be seen in the bottom panel of Table 2, which has 

two large maximum odds ratios, one for LEP status, and one for the proportion of Asian 

students. Both of these odds ratios arise from synthetic data generated for State 5, which is 

smaller and more homogenous; there are very few Asian students in State 5, and even fewer 

students designated as LEP.  

6.2. CONDITIONAL DISTRIBUTIONS 

An important test of synthetic data is not just whether it preserves marginal distributions, but 

also whether it preserves relationships between variables. Here, we check relationships by 

examining conditional distributions of test scores within demographic subgroups. As in Table 

2, we examine the standardized mean difference in test scores, as well as the percent difference 

in variance. The results for racial subgroups are shown in Table 3, which summarizes differences 

between the real and synthetic means and variances within each racial subgroup across all 16 

kernel datasets. For instance, the median standardized mean difference for white students’ math 

scores is 0.00.  

 What can be seen in Table 3 is that for most states, the conditional means and variances 

of achievement scores are preserved quite well in the synthetic data. Most differences in mean 

test scores between synthetic and real data are less than a few hundredths of a standard deviation 

for nearly all racial subgroups. However, that is not true for all datasets and racial subgroups. In 

particular, there are particularly large differences for Asian test scores (SMD = -1.47 for math, 

and -0.94 for reading). These arise in State 5, which had only a few Asian students, and hence 

the models used to predict their test scores were considerably less accura
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Table 3: Utility of Synthetic Data: Conditional Distributions of Test Scores by Race 

Math Achievement Scores 
  Parametric Models (SRCware) Semiparametric Models (synthpop) 
Subgroup Metric Min 25% Median 75% Max Min 25% Median 75% Max 
White	 Standardized	Mean	Difference	 -0.16	 0.00	 0.00	 0.03	 0.17	 -0.02	 -0.01	 -0.01	 0.00	 0.01	

%	Difference	in	Variance	 -23%	 -8%	 -2%	 5%	 47%	 -18%	 0%	 0%	 1%	 2%	
Hispanic	 Standardized	Mean	Difference	 -0.04	 -0.01	 0.00	 0.03	 0.08	 -0.13	 -0.01	 0.01	 0.02	 0.06	
	 %	Difference	in	Variance	 -29%	 -4%	 -1%	 5%	 36%	 -10%	 -1%	 1%	 4%	 34%	
Black	 Standardized	Mean	Difference	 -0.04	 0.00	 0.01	 0.09	 0.15	 -0.01	 0.02	 0.06	 0.08	 0.14	
	 %	Difference	in	Variance	 -65%	 -11%	 2%	 11%	 29%	 -10%	 -2%	 2%	 7%	 27%	
Asian	 Standardized	Mean	Difference	 -0.94	 -0.11	 -0.01	 0.04	 0.36	 -0.32	 -0.16	 -0.10	 -0.04	 0.46	
	 %	Difference	in	Variance	 -30%	 -15%	 -6%	 4%	 240%	 -72%	 -15%	 -2%	 6%	 29%	
Other	 Standardized	Mean	Difference	 -0.27	 -0.07	 -0.03	 0.00	 0.06	 0.00	 0.00	 0.02	 0.03	 0.10	
	 %	Difference	in	Variance	 -19%	 -5%	 -2%	 9%	 59%	 -17%	 -2%	 1%	 3%	 15%	

Reading Achievement Scores 
Subgroup Metric Min 25% Median 75% Max Min 25% Median 75% Max 

White	
Standardized	 Mean	
Difference	 -0.05	 -0.01	 0.00	 0.01	 0.06	 -0.03	 -0.01	 0.00	 0.00	 0.01	

	 %	Difference	in	Variance	 -19%	 -5%	 -2%	 9%	 59%	 -17%	 -2%	 1%	 3%	 15%	

Hispanic	 Standardized	 Mean	
Difference	 -0.06	 -0.01	 0.00	 0.01	 0.05	 -0.11	 -0.01	 0.01	 0.02	 0.07	

	 %	Difference	in	Variance	 -28%	 -5%	 -1%	 5%	 36%	 -10%	 -1%	 1%	 3%	 41%	

Black	
Standardized	 Mean	
Difference	 -0.06	 -0.01	 0.01	 0.02	 0.07	 0.00	 0.02	 0.03	 0.05	 0.07	

	 %	Difference	in	Variance	 -62%	 -10%	 -2%	 6%	 35%	 -8%	 -3%	 2%	 5%	 22%	

Asian	
Standardized	 Mean	
Difference	 -1.47	 -0.09	 -0.01	 0.05	 0.68	 -0.20	 -0.07	 -0.03	 0.06	 0.20	

	 %	Difference	in	Variance	 -33%	 -19%	 -6%	 8%	 185%	 -25%	 -2%	 0%	 8%	 13%	

Other	 Standardized	 Mean	
Difference	 -0.11	 -0.06	 -0.05	 -0.01	 0.04	 -0.04	 -0.02	 -0.01	 0.02	 0.07	

	 %	Difference	in	Variance	 -13%	 -9%	 -3%	 -1%	 45%	 -24%	 -4%	 0%	 1%	 19%	
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Table 4: Utility of Synthetic Data: Conditional Distributions of Test Scores by FRL and Gender	
Conditional	Distribution	of	Achievement	Scores	by	FRL	Status	

	 	 	 Parametric Models (SRCware)	 Semiparametric Models (synthpop)	

Outcome	 FRL	 Metric	 Min	 25%	 50%	 75%	 Max	 Min	 25%	 50%	 75%	 Max	

Math	
Achievement	

No	
Standardized	Mean	Difference	 -0.16	 -0.01	 0.00	 0.01	 0.08	 -0.03	 -0.02	 -0.02	 -0.01	 0.03	

%	Difference	in	Variance	 -18%	 -5%	 -1%	 9%	 91%	 -22%	 -1%	 0%	 2%	 4%	

Yes	
Standardized	Mean	Difference	 -0.13	 -0.01	 0.00	 0.02	 0.60	 -0.04	 0.00	 0.02	 0.04	 0.21	

%	Difference	in	Variance	 -49%	 -6%	 -2%	 10%	 61%	 -19%	 -1%	 1%	 5%	 44%	

Reading	
Achievement	

No	
Standardized	Mean	Difference	 -0.04	 -0.02	 -0.01	 0.00	 0.02	 -0.04	 -0.02	 -0.02	 -0.01	 0.03	

%	Difference	in	Variance	 -18%	 -6%	 -1%	 3%	 83%	 -22%	 -1%	 0%	 1%	 3%	

Yes	
Standardized	Mean	Difference	 -0.08	 -0.01	 0.00	 0.02	 0.47	 -0.03	 -0.01	 0.02	 0.04	 0.25	

%	Difference	in	Variance	 -47%	 -3%	 1%	 11%	 52%	 -8%	 0%	 2%	 6%	 33%	

Conditional	Distribution	of	Achievement	Scores	by	Gender	

Outcome	 Gender	 Metric	 	 	 Min	 25%	 50%	 75%	 Max	 Min	 25%	 50%	 75%	 Max	

Math	
Achievement	

Female	
Standardized	Mean	Difference	 -0.14	 -0.01	 0.00	 0.00	 0.15	 -0.01	 0.00	 0.01	 0.02	 0.05	

%	Difference	in	Variance	 -21%	 -4%	 2%	 6%	 16%	 -12%	 -2%	 -1%	 2%	 4%	

Male	
Standardized	Mean	Difference	 -0.03	 -0.01	 0.00	 0.00	 0.01	 -0.01	 0.01	 0.01	 0.01	 0.04	

%	Difference	in	Variance	 -23%	 -4%	 -3%	 1%	 10%	 -11%	 -3%	 -1%	 -1%	 0%	

Reading	
Achievement	

Female	
Standardized	Mean	Difference	 -0.07	 -0.03	 0.00	 0.00	 0.00	 -0.05	 -0.02	 -0.01	 0.00	 0.01	

%	Difference	in	Variance	 -18%	 -7%	 0%	 4%	 12%	 -13%	 -1%	 0%	 1%	 4%	

Male	
Standardized	Mean	Difference	 -0.07	 -0.01	 0.00	 0.01	 0.15	 -0.03	 -0.02	 -0.01	 -0.01	 0.00	

%	Difference	in	Variance	 -14%	 -5%	 -2%	 0%	 8%	 -11%	 -3%	 -1%	 -1%	 5%	
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 Similar results can be seen in Table 4, which shows standardized mean differences and 

percent differences in variance for test scores within subgroups defined by FRL status and by 

gender. Taken together, Tables 3 and 4 show that the mean and variance of the distribution of 

test scores within various demographic subgroups are largely preserved in the synthetic data. In 

general, the differences are somewhat smaller for the data generated with semiparametric 

models than with parametric models.  

 It is worth noting that not only are the moments (i.e., mean and variance) of various 

conditional distributions preserved in the synthetic data, often the entire conditional distribution 

of test scores is preserved. As an example, consider Figure 4, which takes math scores of eighth 

graders in State 3 and overlays the distribution of scores for each race in the real data (shaded 

in blue) and in the synthetic data (shaded in red). These distributions are nearly identical. 

Moreover, similar plots were produced for every kernel dataset and variable and nearly all of 

them show that synthesis often preserves many conditional distributions. 

7. DISCLOSURE RISKS 

Accurately assessing disclosure risk is particularly difficult for synthetic data because none of 

the records are “real.” If an intruder were to obtain any of the synthetic records, they would only 

have randomly generated quantities, rather than real data. However, that does not mean that 

synthetic data pose no disclosure risk. Even though the data are generated randomly, there is a 

chance (particularly with CART-based methods) that records are perfectly (or almost perfectly) 

recreated. While an intruder may have no way of knowing whether a given record was identical 

to a real one, it may be of interest to states whether they might be releasing such records. Thus, 
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in this section we address the extent to which this might have occurred in the synthetic data we 

generated. 

 
Figure 4: Conditional Distributions of Math Achievement. This plot shows the distribution of 
math achievement for synthetic data (red) and real data (blue) within racial subgroups of eighth 
graders in State 3. 

 
Typically, federal agencies describe disclosure risk in terms of some sort of intruder 

attack for the data at hand (see Reiter, 2019). These attack scenarios often assume an intruder is 

attempting to identify a target individual in the dataset. The intruder may know some covariates 

about that individual (e.g., their race and gender) that are typically a subset of the variables in 

the dataset, and which are not considered particularly sensitive. They then attempt to match 

those covariates to records in the data. There may be many records that match, in which case, 

the intruder could have a difficult time discerning which record refers to their intended target. 
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However, if there are only a few matches, then the intruder will have a greater probability of 

figuring out which refers to their target (see Duncan & Lambert, 1986). 

This logic can be seen as a basis for the type of microsuppression (i.e., small-cell 

suppression) that states already engage in. Under microsuppression, states divide students into 

risk strata based on certain demographic information, and strata with few students are deleted. 

While the exact procedures followed differ according to the data to be released, there appear to 

be some rules of thumb (see Johnson, 2007; Levesque, et. al., 2015). Often, strata are defined 

on school, grade, race, and gender (Massachusetts, 2014) and “few” typically means fewer than 

five or 10 (e.g., Oregon, 2016; Wisconsin, 2018). Given guidance in various data governance 

manuals (e.g., Montana, 2018; Nebraska, 2013), it would seem that states, at least legally, have 

accepted the risk to records not suppressed as reasonable.  

Thus, in order for synthetic data to pose the same or greater risk, the following would 

need to be true about a synthetic record. First, it would need to be identical to a real record. 

Second, it would need to be in a small risk stratum. This is because if it were not, then states 

might live with releasing such data to researchers, and some have accepted the risk of releasing 

such data for public use (Massachusetts, 2014).  

To get a sense of this, we took the real data and identified records in risk strata smaller 

than five, which we call “at-risk” records. Across the 16 kernel datasets, this totaled over 

247,000 at-risk records. Then, we attempted to match these records in the synthetic data. Of the 

16 sets of synthetic datasets (a total of 320 datasets), there were only 17 at-risk records that were 

matched. Most of these were from the datasets generated by CART-based methods: one in State 

3 (fourth grade) and 15 in State 4 (5 in fourth grade, 10 in eighth grade). One additional match 

occurred among the datasets generated by parametric methods in State 4 (fourth grade). In sum, 

these matches were quite rare, though not nonexistent. 
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7.1. STRENGTHENING PRIVACY 

This section highlights that it is possible for such methods to release records that states would 

otherwise suppress prior to releasing data. However, there are several steps that states can take 

in order to further reduce disclosure risks. The first, and most obvious, would be to conduct a 

similar risk analysis as the previous section and simply delete the offending records from the 

data.  

 A related approach would be to release subsamples of each synthetic dataset, rather 

than releasing each synthetic dataset in its entirety. Methods for doing so have been discussed 

by Reiter (2005b). The utility of such data may not match the promising results presented here, 

primarily because releasing less data means that quantities will be estimated with greater 

uncertainty. Reiter et al. (2009) and Reiter (2019) discuss systems of differential privacy 

wherein subsamples of synthetic data are released, researchers use those data to train models, 

and then submit their code to data administrators who can verify analytic results on the real data.  

8. REFLECTIONS & CONCLUSIONS 

In this article, we set out to generate and evaluate synthetic datasets with an eye on how feasible 

and replicable this process might be for SLDS. What we found is that with only modest tuning 

of model specifications, we obtained synthetic data that preserved many marginal and 

conditional distributions fairly well. Moreover, it tended to afford at least as much disclosure 

protection as microsuppression and could potentially offer much stronger protections depending 

the steps take to post-process the synthetic. Thus, from a utility and privacy standpoint, synthetic 

data methods offer a useful alternative the practice of microsuppression.  
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That said, the workflow established in this article was not always smooth, and certainly 

has its share of bottlenecks. First, it requires reasonably high-quality data to begin with. States 

that already have centralized data systems capable of generating “clean” datasets that require 

minimal pre-processing will be well-positioned to leverage such a pipeline.  

States will also need some capacity to implement the methods we used. We relied on open 

source software, which means it costs nothing to use them. However, that does not mean they 

are free; in order to use them, SLDS would need personnel capable of coding the imputation 

and synthesis stages. This is important, since higher-quality synthetic data are possible through 

more accurate models, and the software used in this demonstration is amenable to custom 

modeling functions, not just linear models, random forests, and CARTs, that might be able to 

rectify observed differences in conditional distributions. However, using more complex models 

requires greater computational resources. With most kernel datasets, even our simple models 

required a server capable of distributing computations in order to generate synthetic datasets in 

a reasonable amount of time.  

Finally, a key part of this pipeline involves checking utility and disclosure risks on the 

synthetic data. We consider this to be a key step in the pipeline, and an important evaluation 

that can ensure the synthetic data are useful without posing inordinate risks to student privacy. 

We have described several approaches states might take in order to check both utility and 

privacy, and consider those to be a useful starting point or baseline analysis. 

There are additional limitations worth noting, both of synthetic data methods and how 

we implemented them. Perhaps one of the biggest limitations of synthetic data methods is that 

while they preserve relationships between variables within the observed data fairly well, they 

tend to shrink relationships between exogenous variables and variables in the data. For instance, 

suppose a state generates synthetic data in a manner similar to our pipeline (with similar datasets 
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that include race and test scores), and a researcher then joins information from the U.S. Census 

Bureau (e.g., mean earnings, mean family size, etc.) to the synthetic datasets. Relationships 

between variables used to generate the synthetic data (e.g., race and test scores) should be 

preserved in the synthetic data, but relationships between variables in the Census data (e.g., 

mean earnings) and variables in the synthetic data (e.g., race or test scores) will be attenuated 

toward zero. 

There are several limitations to this study. First, we focused on a replicable workflow 

pipeline and models simple enough to reduce computational demands. But, it is entirely possible 

that data quality could be affected by using more customized methods, including modifying the 

pipeline and employing more flexible imputation/synthesis models. Such steps could, in theory, 

improve the utility of synthetic data, but could also (depending on the models used) increase the 

time and resources needed to generate it, as well as potentially increase disclosure risks. 

In addition, the type of datasets we generated may not reflect the many needs of SLDS and 

educational researchers. Data types may be more complex, and many analyses in education are 

longitudinal and follow students over multiple years. The approaches described here would need 

to be extended in various ways in order to ensure that temporal relationships between variables 

are maintained. Moreover, the types of models used, for instance, to model student achievement 

growth are more expansive and hence present additional challenges both in terms of model and 

computational complexity. 
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